

The FERMI@Elettra MPS

L. Fröhlich, A. I. Bogani, K. Casarin, G. Cautero, G. Gaio, F. Giacuzzo, D. Giuressi, A. Gubertini, R. H. Menk, E. Quai, G. Scalamera, A. Vascotto (Sincrotrone Trieste, Basovizza, Italy) L. Catani (INFN, Rome, Italy), D. Di Giovenale

DITANET workshop on beam loss monitoring, 2011-12-06

Overview

- FERMI@Elettra
- MPS architecture
- General features
- Subsystems:
 - Ionization chamber BLMs
 - RADFET online dosimetry

DITANET workshop on beam loss monitoring, 2011-12-06

Elettra & FERMI

DITANET workshop on beam loss monitoring, 2011-12-06

	Energy	Bunch Charge	Repetition Rate	Beam Power
Typical	1.2 GeV	350 pC	10 Hz	4.2 W
Design	1.5 GeV	1 nC	50 Hz	75 W

DITANET workshop on beam loss monitoring, 2011-12-06

PIN diode BLMs

K. Casarin, E. Quai, S. Sbarra, A. Vascotto

DITANET workshop on beam loss monitoring, 2011-12-06

Cherenkov Fiber Beam Loss Position Monitors (BLPMs)

DITANET workshop on beam loss monitoring, 2011-12-06

Ionization Chamber Beam Loss Monitors (BLMs)

DITANET workshop on beam loss monitoring, 2011-12-06

Charge Monitors

S. Bassanese

DITANET workshop on beam loss monitoring, 2011-12-06

MPS Architecture & General Features

DITANET workshop on beam loss monitoring, 2011-12-06

MPS Overview

DITANET workshop on beam loss monitoring, 2011-12-06

Screen Interlock

- Inhibits electron beam when:
 - Screens moving or in undefined/forbidden position
 - Linac screen inserted when in FEL-1 or FEL-2 mode
- Only active for screens in current beam path

Operation Mode

Purpose 1: Do not interfere when not necessary.

DITANET workshop on beam loss monitoring, 2011-12-06

Lars Fröhlich, Sincrotrone Trieste

Operation Modes

Dipole currents monitored via DCCT and analog PLC input.

DITANET workshop on beam loss monitoring, 2011-12-06

DITANET workshop on beam loss monitoring, 2011-12-06

Ionization Chambers

DITANET workshop on beam loss monitoring, 2011-12-06

Ionization Chambers

- Milled aluminum enclosure
- Electrodes: printed circuit boards
- Use in air or with gas flux
- Volume:
 1.31
- Voltage: up to 1000 V
- Sensitivity (air): ~46 µC/Gy
- Leakage current:
 << 200 fA (at 1000 V)
- Fermi:

1 ionization chamber in air per undulator segment (19 total)

Ionization Chambers

DITANET workshop on beam loss monitoring, 2011-12-06

Ionization Chamber Frontend

XPi DAS

- 19" XPi modular data acquisition system
- Microprocessor controlled
- Ethernet interface
- 1× HV generation up to 2000 V (power ≤ 1 W)
- 4× Charge-integrating amplifier and 20-bit ADC

DITANET workshop on beam loss monitoring, 2011-12-06

2 programmable alarm outputs

• Full charge range:

ullet

- Noise floor (with Fermi chamber): <0.4 µGy/h (rms)
- Tango server
- Data acquisition tested up to 50 Hz

Ionization Chamber Frontend

Collection Efficiency

- Air filled chamber
- Charges collected:
 - Electrons
 - Oxygen ions (O₂⁻)
 - Positive ions (N₂⁺ etc.)
- Integration time: 3 ms (2 ms sufficient to collect all charges)

Online Solid-State Dosimetry

DITANET workshop on beam loss monitoring, 2011-12-06

negative gate potential \rightarrow conductive inversion layer

DITANET workshop on beam loss monitoring, 2011-12-06

ionizing radiation \rightarrow stationary charges in insulation layer

DITANET workshop on beam loss monitoring, 2011-12-06

RADFET Dosimeters

DITANET workshop on beam loss monitoring, 2011-12-06

Dosimeter Reader

L01-DOSFET

- Microprocessor controlled
- Ethernet connection
- 4 RADFET channels
- Fixed read-out current: 490 µA
- Voltage read-out: 24 bit ADC, up to 25 V
- Programmable interlock output
- Uses standard USB cables

DITANET workshop on beam loss monitoring, 2011-12-06

DITANET workshop on beam loss monitoring, 2011-12-06

Undulator with Open Gap

DITANET workshop on beam loss monitoring, 2011-12-06

impact of 500 pC bunches at 10 Hz 100 Gy/s 3 10 Gy/s 2 magnet magnet Gy/s abbroximate 100 mGy/de 1 а Сш О Л vacuum chamber -1 magnet magnet -2 10 mGy/s -3 1 mGy/s -2 2 -6 -4 Û 4 6 × (cm)

DITANET workshop on beam loss monitoring, 2011-12-06

DITANET workshop on beam loss monitoring, 2011-12-06

Irradiation and Fade

DITANET workshop on beam loss monitoring, 2011-12-06

🔾 Undulator Dose Measurement

_ ×

Dose History Modulator FEL-1

DITANET workshop on beam loss monitoring, 2011-12-06

Dose History Radiator 2 FEL-1

DITANET workshop on beam loss monitoring, 2011-12-06

Lars Fröhlich, Sincrotrone Trieste

aelettra

Thanks for your interest.

Many thanks to:

- Mario Ferianis, Alessandro Carniel, and the instrumentation and controls groups of Sincrotrone Trieste
- Arne Miller (Risø High Dose Reference Laboratory, DK)
- Andrew Holmes-Siedle (REM Oxford Ltd., UK)