

Diagnostics for Machine Protection at FERMI@Elettra

L. Fröhlich, A. I. Bogani, K. Casarin, G. Cautero, G. Gaio, F. Giacuzzo, D. Giuressi, A. Gubertini, R. H. Menk, E. Quai, G. Scalamera, A. Vascotto (Sincrotrone Trieste, Basovizza, Italy) L. Catani (INFN, Rome, Italy), D. Di Giovenale

Workshop on Machine Protection, CERN, 6-8 June 2012

Overview

- FERMI@Elettra
- MPS architecture
- General features
- Subsystems:
 - Fiber beam loss position monitors
 - Ionization chambers
 - RADFET online dosimetry

Elettra & FERMI

Workshop on Machine Protection, CERN, 6-8 June 2012

FERMI@Elettra

	Energy	Bunch Charge	Repetition Rate	Beam Power
Typical	1.2 GeV	350 pC	10 Hz	4.2 W
Design	1.5 GeV	1 nC	50 Hz	75 W

Workshop on Machine Protection, CERN, 6-8 June 2012

FERMI@Elettra

Cherenkov Fiber Beam Loss Position Monitors (BLPMs)

FERMI@Elettra

Ionization Chamber Beam Loss Monitors (BLMs)

Workshop on Machine Protection, CERN, 6–8 June 2012

MPS Overview

Workshop on Machine Protection, CERN, 6-8 June 2012

Workshop on Machine Protection, CERN, 6–8 June 2012

Cherenkov Fiber Beam Loss Position Monitor

More information: D. Di Giovenale, L. Catani, L. Fröhlich, "A read-out system for online monitoring of intensity and position of beam losses in electron linacs", Nucl. Instr. & Meth. A 665, pp. 33–39, 2011.

Workshop on Machine Protection, CERN, 6-8 June 2012

250 MS/s ADC \rightarrow longitudinal resolution ~50 cm

Workshop on Machine Protection, CERN, 6–8 June 2012

Undulator Cross Section

Workshop on Machine Protection, CERN, 6-8 June 2012

Multi-pixel Photon Counters (MPPCs)

- Array of avalanche photodiodes (APDs) connected in parallel
- Reverse bias → photon causes
 APD breakdown
- Photomultiplier-like gain
- Dynamic range limited by number of APDs
- Rise time: some 100 ps
- Hamamatsu S10362-11-050U: 400 APDs at ~70 V reverse bias

Signal Processing

Workshop on Machine Protection, CERN, 6-8 June 2012

Lars Fröhlich, Sincrotrone Trieste

Viewer Application

Workshop on Machine Protection, CERN, 6-8 June 2012

Ionization Chambers

Workshop on Machine Protection, CERN, 6-8 June 2012

Ionization Chambers

- Milled aluminum enclosure
- Electrodes: printed circuit boards
- Use in air or with gas flux
- Volume:
 1.31
- Voltage: up to 1000 V
- Sensitivity (air): ~46 µC/Gy
- Leakage current:
 << 200 fA (at 1000 V)
- Fermi:

1 ionization chamber in air per undulator segment (19 total)

Ionization Chambers

Workshop on Machine Protection, CERN, 6-8 June 2012

Ionization Chamber Frontend

- Modular data acquisition system
- Ethernet interface
- 1× HV up to 2000 V, \leq 1 W
- 4× Charge-integrating amplifier Ranges: 0...50 pC – 0...1.8 nC Integration time: 1 ms – 1 s
- 20-bit ADC
- Noise w/ Fermi chamber: <0.4 µGy/h

Workshop on Machine Protection, CERN, 6-8 June 2012

Collection Efficiency

- Air filled chamber
- Charges collected:
 - Electrons
 - Oxygen ions (O₂⁻)
 - Positive ions (N₂⁺ etc.)
- Integration time: 3 ms (2 ms sufficient to collect all charges)

Online Solid-State Dosimetry

Workshop on Machine Protection, CERN, 6-8 June 2012

negative gate potential \rightarrow conductive inversion layer

Workshop on Machine Protection, CERN, 6-8 June 2012

ionizing radiation \rightarrow stationary charges in insulation layer

Workshop on Machine Protection, CERN, 6–8 June 2012

RADFET Dosimeters

- REM Oxford Ltd. RADFET RFT-300-CC10G1
- Chip contains 2 p-channel MOSFETs with 300 nm insulator layer

Workshop on Machine Protection, CERN, 6-8 June 2012

Dosimeter Reader

L01-DOSFET

- Ethernet interface
- 4 RADFET channels
- Fixed read-out current: 490 µA
- Voltage read-out: 24 bit ADC, up to 25 V
- Programmable interlock output
- Uses standard USB cables

Workshop on Machine Protection, CERN, 6-8 June 2012

Undulator with Open Gap

Workshop on Machine Protection, CERN, 6-8 June 2012

Dose Histories

🗙 Undulator Dose Measurement

Workshop on Machine Protection, CERN, 6–8 June 2012

Thanks for your interest.

Many thanks to:

- Mario Ferianis, Alessandro Carniel, and the instrumentation and controls groups of Sincrotrone Trieste
- Arne Miller (Risø High Dose Reference Laboratory, DK)
- Andrew Holmes-Siedle (REM Oxford Ltd., UK)