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Peculiarities of ERLs

• High average beam power:
100 mA ⋅ 5 GeV/e = 500 MW

• In case of strong losses:
Breakdown of energy recovery
 maximum loss power determined by capacity of RF system

• In case of small losses:
Tiny fraction of the beam
still carries huge average power
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Hazards

Local loss power (W) Effects

0.001 — 0.1 Demagnetization of permanent magnets

1 — 10 Excessive cryogenic load, quenches

01 — 100 Radiation damage to electronics, optical 
components, &c.

01 — 100 Radioactivation of components

10 — 100 Mechanical failure of flange connections

100 — 1000 Other thermal effects, mechanical damage
10−5

10−11

For an ERL with P = 100 MW:
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FLASH — Not an ERL...

127 MeV 380–450 MeV

up to 1 GeV

5 MeV

1.3 GHz

cryomodules with superconducting TESLA cavities

SASE FEL      XUV light
6.5—50 nm
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(Nd2Fe14B)

diagnostic 
undulator

Measurements at FLASH

• Relative demagnetization: 5∙10−7/Gy

Skupin, Li, Pflüger, Faatz: Undulator 
demagnetization due to radiation losses at FLASH, 
Proc. EPAC 2008, pp. 2308–2310

Dose
(kGy)

ΔB/B
(%)

2004–08–13 0 0

2006–03–21 37 −2.3

2007–09–29 61 −3.1

Simulations indicate

10% FEL power loss

for

0.5% (periodic) field loss

For 10 years undulator lifetime:

5 Gy/d dose budget
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Undulator Beamline Model

diagnostic undulator

FEL undulator segments

Geometry model for 
the multi-particle 
transport code Fluka
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Beam Loss in the Undulator

• Loss of a bunch at 
the exit of 
undulator 1

• Bunch strikes the 
bottom of the 
vacuum chamber

Parameters:
• 1 GeV
• 1 nC/bunch
• 1 bunch/macropulse
• 10 Hz

vertical section
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Beam Loss in the Undulator

• Dose rate around 1 kGy/h 
in an extended range
(1 nC/bunch, 10 Hz, 1 GeV
  10 W)

To stay within 5 Gy/d, 
local beam loss has to 
be limited to 2 mW.

For a 100 MW beam:

2∙10−11 (relative)

For CW 1.3 GHz beam:

<10 MeV/bunch
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Activation of Components at FLASH

~160 µA

Main source at FLASH:
field emission from
RF gun
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Dark Current Transport in the RF Gun Cavity

Tracking of dark current from emitter surfaces
(with enhanced Astra code for complex 3D geometries)
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Overview

Location of major
dark current losses:
• behind rf gun
• bunch compressor 2
• bunch compressor 3
• transverse collimators

6 W14 W6 W8 W<1 W dark current power deposition
1 mSv/h2 mSv/h4 mSv/h contact dose equivalent rate

For 100 MW ERL:
relative beam loss of 
10−7 can cause 
significant activation 
problems



Machine Protection Needs
for high power ERLs
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Passive Protection Needs

Very good understanding and control of beam dynamics:
• matching
• halo formation
• space charge, CSR, Touschek scattering, gas scattering, ion trapping, BBU
• dark current sources & transport

Very good collimation & shielding:
• at energies as low as possible
• after halo sources
• special attention: cryo sections,

insertion devices (esp. long ID sections)

What may help:
• large apertures
• exchangeable insertion devices 
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Machine Protection System Needs

Preventive measures
• Check magnet currents, RF systems, water flow, &c.
• Define valid beam paths (operation modes, machine modes)
• Define power limits (beam modes)

Fast beam interlock
• As fast as possible: microseconds (cable delays)
• Actuators:

– injector laser
– RF power
– dump kickers (for long machines)

• Inputs:
– Systems for beam loss detection
– BPMs
– Quench detection for SC cavities
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Beam Loss Monitoring

Differential current monitoring
• DCCT setup proposed at BNL aims at 5⋅10−4 resolution

Beam loss monitors
• wide range of photomultiplier-based designs
• discrete ionization chambers
• long ionization chambers (gas-filled coax cables)
• PIN diodes
• secondary electron monitors

P. Cameron, Differential Current Measurement in the BNL Energy Recovery Linac 
Test Facility, Nucl. Instr. and Meth. A 557 (2006), pp. 331—333

well suited for ID protection



Thanks for your attention.
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