# Undulator Protection for FLASH and for the European XFEL

- FLASH sacrificial undulator: beam loss simulations
- FLASH BLM system
- XFEL plans



### **FLASH** sacrificial undulator



# **FLASH Collimators**





HELMHOLTZ

# **Sacrificial undulator**







HELMHOLTZ

Lars Fröhlich, DESY Magnet Irradiation Workshop, SLAC, 19 June 2008

# **Sacrificial Undulator: Geometry**



Lars Fröhlich, DESY Magnet Irradiation Workshop, SLAC, 19 June 2008



HELMHOLTZ

# **Simulation Setup**





# **Deposited Dose**



# absolute dose (Gy)

| Α   | В     | С    | D  |
|-----|-------|------|----|
| 110 | 3600  | 3500 | 92 |
|     | TLD B |      |    |
|     |       |      |    |

- dose measured by two TLDs: ~86 kGy (12/2004–5/2008)
- almost negligible dose in outer magnets (position unclear)



### **FLASH undulator protection**



# **FLASH Machine Protection System**

- **83 BLMs** •
- differential charge monitoring ٠ ("Toroid Protection System")
- response time <4  $\mu$ s incl. cables
- actuators: ٠
- switch off photoinjector laser stop RF in ACC1

65 photomultipliers with scintillators



18 aluminum cathode electron multipliers





Lars Fröhlich, DESY Magnet Irradiation Workshop, SLAC, 19 June 2008



# **Beam Interlock Modes**

#### Low current modes (max. 150 nA/180 W)

- very tolerant against losses in the linac
- only huge undulator losses stop machine operation → operators have to restart beam manually

### High current mode (up to 72 µA/86 kW)

• single BLM alarm cuts the macropulse





# **Scintillator Assembly**

plastic scintillator (NE110 or equivalent)

aluminum foil

black plastic foil



B. Michalek (DESY)

Lars Fröhlich, DESY Magnet Irradiation Workshop, SLAC, 19 June 2008



HELMHOLTZ ASSOCIATION

# **Undulator BLMs**

- 6 scintillator panels (and PMTs) per undulator segment
- calibration vs. scattered charge with wirescans
- BLM thresholds adjusted manually to keep dose rate < 10 Gy/d</li>
- dose measurements:
  - weekly exchanged TLDs
  - online fiber dosimetry system

| undulator segment | I | undulator segment |   |
|-------------------|---|-------------------|---|
|                   |   |                   | i |

(top view)





## **Undulator BLMs**

Lars Fröhlich, DESY







HELMHOLTZ ASSOCIATION

A

HELMHOLTZ

ASSOCIATION

# **BLM Thresholds**



# **Undulator Dose Rate (TLD Measurements)**



Courtesy T. Vielitz (HASYLAB)

Lars Fröhlich, DESY Magnet Irradiation Workshop, SLAC, 19 June 2008



### **XFEL undulator protection**





# **The European X-Ray Free Electron Laser**







HELMHOLTZ

# **Beam Structure**

- RF system pulsed at 10 Hz
- Electron bunches (1 nC) grouped in macropulses
- Up to 3000 bunches/macropulse in arbitrary pattern





# **XFEL Machine Protection System Inputs**

#### **Beam loss monitoring**

- Beam Loss Monitors (BLMs)
  - Undulator sections: Photomultipliers + plastic scintillators
  - Linac and high radiation areas: Ionization chambers or other systems (Čerenkov fibers, sLIONs, PIN diodes, ...)
- Multiple differential charge measurements

#### **Precautionary monitoring**

- Magnet power supplies
- LLRF exceptions, quench detection
- Valves, screens, wire scanners, temperatures, water flow, ...
- Beam position



# **MPS Topology I**

Only two points for intra-macropulse beam stops:





# **MPS Topology II**



Lars Fröhlich, DESY Magnet Irradiation Workshop, SLAC, 19 June 2008



# **Functionality**

### **Operation modes**

• Valves and dipoles are set right to guide the beam to a dump

### **Power limits**

• Limit the number of bunches for startup, to protect screens, ...

### Alarm cutoffs

Immediate reaction in case of beam loss





ELMHOLTZ

# **Undulator BLMs**

Scintillator panels in the space between undulator segments

#### Undulator option a)

two scintillator rods 242 photomultipliers high redundancy

#### Undulator option b)

one scintillator panel with gap for beam pipe 121 photomultipliers limited redundancy







# **People (actively) involved**

### **FLASH MPS**

Lars Fröhlich, Martin Staack (DESY)

A. Hamdi, J. Novo, F. Ballester (CEA-Saclay)

### **XFEL MPS**

Igor Cheviakov, Lars Fröhlich, Sven Karstensen, Timmy Lensch,

Frank Schmidt-Föhre, Martin Staack, Jörg Thomas, Petr Vetrov (DESY)



HELMHOLTZ